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Electricity Transmission

-----
.....

$354 B electricity sales

166,000 miles operated by 500 companies
98% AC, voltages > 100kV

= 3 major interconnections

= 3,170 utility companies

Over 140 control areas

14,000 transmission substations
= ~44 million liquid-immersed distribution
transformers in service in 1995

= ~12 million dry transformers

Sources: 1996 ORNL, “Determination Analysis of Energy Conservation Standards for Distribution

U.S. DEPARTMENT OF

Transformers”; and DoE Office of Electricity Delivery and Energy Reliability eENERGY
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Delivering Electricity

S

...day-ahead market & spot market coordinate additional generation

As demand increases...

..generator spins up: coal/nuclear /gas (day-ahead), gas (spot market)
...power flows into the grid
...electrons flow along path of least resistance

..the load draws power from the grid
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Delivering Electricity

A

» Negligible storage - just in time delivery of power

« Centrally controlled Not the
Internet

» Negligible control of path - Joules are indistinguishable
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Drivers for Change |

ARPA-E Workshop

The White Space
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Increasingly Unreliable

Blackouts measured in customers affected
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Source: NERC DAWG records and EIA data cited in Hines, Apt, Liao, Talukdar
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Aging Infrastructure

“average generating station was built in the 1960s using even older technology.

“average age of a substation transformer is 42, 2 years more than...life span.”

Source: Galvin Electricity Initiative
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Increasingly Unpredictable

Proliferation of non-dispatchable generation
December 2010

o
WA: 15% x 2020*

ME: 30% x 2000
New RE: 1026 x 2017

NH: 23.8%6 x 2025
MA: 22.19% x 2020 .
New RE: 15% x 2020 |
(+1% annually thereafter)

RI1: 1696 x 2020

CT: 23%0 x 2020

PA: ~18% x 20211

VT: (1) RE meets any increase

MN: 259 x 2025 In retail sales x 2012,
MT: 15%0 x 2015 Xcel: 30% x 2020) (2) 20% RE & CHP x 2017

OR: 25% x 2025 (large utilities)* MI: 10% + 1,100 MW
5% - 10% x 2025 (smaller utilities X 2015*

Wl

3 WI: Varies by utility;
10% x 2015 statewide
IA. 105 MW 7 OH: 259 x 20251

ki
) IL: 25% x 2025 & NJ: 22.59% x 2021
UT: 20% by 2025 i:’:.':‘ KS: 20%6 x 2020 i:‘:.':‘ e

MD: 2096 x 2022
MO: 15% x 2021 C5eo =
AZ: 15% x 2025 | ——
k. OK: 15% x 2015

_ DC: 20% x 2020
£ NM: 20% x 2020 (10Us)
10%0 x 2020 (co-ops)

TX: 5,880 MW x 2015
L

: 25% x 2025*

i,
i
. o

£

CO: 30% by 2020 (10uUs)
10% by 2020 (co-ops & large munis)*

CA: 33% x 2020

NC: 12.5% x 2021 (10Us)
10% x 2018 (co-ops & munis)

. PR: 20% x 2035

29 states +

| DC and PR have
#o2 an RPS

Minimum solar or customer-sited requirement (7 states have goals)

@
HI: 40% x 2030

>

. Renewable portfolio standard
. Renewable portfolio goal

~k Extra credit for solar or customer-sited renewables

T Includes non-renewable alternative resources

- :) . . /_,"—'_“\-\\ U.S. DEPARTMENT OF
| aava N ) 4 ENERGY
\ l I \ \;y/ Advanced Research Projects Agency * Energy



http://www.dsireusa.org/�
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Increasingly Unpredictable

Worst case week: Western Wind and Solar Integration Study

2 35% Wind

¥ Hydro “Pumped Storage Hydro ®Gas Turbine

¥ Combined Cycle " Solar PV Solar CSP

"Wind B Steam Coal B Nuclear

10-Apr 11-Apr 12-Apr 13-Apr 14-Apr 15-Apr 16-Apr

Source: Debra Lew, 2010 Western Wind and Solar Integration Study



Congested Lines
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Inefficient Markets

Location marginal pricing
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Drivers for Change

| ARPA-E Workshop |

The White Space

How do we make a more flexible, controllable electricity grid?
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Workshop Overview

Academia (power systems) Academig (control)

4 participants 12 participants

Presentation: Deepak Divan, GTech Presentation: Munther Dahleh, MIT
“Dynamic control of grid assets” “Network control”

Government

18 participants (10 from national labs, 5 DOE, NSF, NIST)
Presentation: Debra Lew, Senior Project Lead NREL
“Western Wind and Solar Integration Study”

Utility/RTO Vendors *?‘%::::::!r
7 participants 9 participants ST E
Presentation: Terry Oliver, CTO BPA Presentation: Le Tang, CTO ABB

“Integrating Renewable Resources “Future Transmission, HVDC &FACTS”
Into the Electric Grid”
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Workshop Findings

Control Theory Control Engineering
linear Centralized
Scheduling
convex

Transmission

Hardware Edge Hardware
HVAC
Mesh VAR Support
Point-point  Storage
HVDC
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Control Theory

Objective:

» Generated Power = Power into Load

 Reliability, Cost, Frequency Control, Voltage Level, etc

Demand
Reference Value ‘ ! i|
A
z/ » Controller » Plant >
Muj[: Li{b&:&ﬂ
T

A

Actuator
lnze

Control = Sensing + Computation + Actuation
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Control Variables

REAL POWER

P _ IV Power = Current -Voltage

REACTIVE POWER
Woltage
VOLTAGE
0 slo 1=I30 2?Io 3;0 0 /
. Energy
time flow
reversed |
Voltage Waveform & Current Waveform
or o] | -
Real Power & Reactive Power ’ = t
ime

. :) . . P Y U.S. DEPARTMENT OF
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Real and Reactive Power Conversion

T T T
=YV vokage —
Curn

eeeeeeeeeeee

Y (inductance of line)
sets change in phase

; @ 2 o ‘_\
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Designing Power Flow

XV

IIIIIIIIP_
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Controlling Power Flow

I =Y xvoo e

U g

Minimizing the cost of fuel to deliver power is Hard (NP)
Must search through many choices of generator outputs for achieving a desired load

What kind of control?

e Linear vs. Non-linear

e Deterministic vs. Stochastic

e Time-invariant vs. Time-varying

e Continuous-time vs. Discrete-time

| 'S W o () :
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Controlling Power Flow

Reference Value
ELS ‘!r\. l
Controller » Plant
Transducer [«
Power Flow Control Error (Frequency, Voltage)
» Feed-forward control * Feedback control
e Assume: » Account for
- Linear - Non-linearity
- Deterministic - Dynamics

- Time Invariant

 Distributed or local control

e Central control

\ . I \ h Advanced Research Projects Agency * Energy



Control Infrastructure

Improved Sensing

A PMU measures
» Current (Hall sensor)
* Frequency (LC Circuit)
* Time (GPS)
 Voltage
» Relative Phase

« Sample 30 msec

Distributed computing
» Fast
» Secure
» Resilient

Improved Communications

Grid Connected Router
* Low-latency
« MPLS
e Cyber security
* 100-600 pus For crypto

Improved Computation

21



Control Challenges

* Traditional control theory assumes centralized feedback control.

* Not always feasible for large-scale distributed systems:

* Inability to communicate with all subsystems

Incomplete/imperfect information

Complexity of centralized decision-making

Asynchrony

Heterogonous decision-makers with different objective and uncertain responses

Networked control (Developed since 2005)

« Several layers: Physical, communication, and decision network
« The physical layer consists of several distributed subsystems, coupled through
and/or economics, via static and/or dynamic constraints.

EEEEEEEEEEEE
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Workshop Findings

Control Theory Control Engineering
: Centralized -
Network linear Dynamic
control ,
Scheduling Real-time
_ convex
Architecture Routing
(protocols,
etc) Transmission
Hardware Edge Hardware
HVAC
Mesh VAR Support
Point-point  storage
HVDC

Yo ala W e
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Actuators

Reference Value

1 Schedule demand
(eg. large industrial loads)

Plant

Q)

o yuf
S R
= P
o 2
)

@

\ 4

A

Actuator
Bz

Control in the Grid

Flexible AC Transmission System:
«Static VAR
«STATCOM

*UPFC




Power Flow Controller (AC)

AC Univesal Power Flow Controller
Global Total =3 Cost=$140/W

Quehec
&, Lawremcn !
-0.0002 S ——
TCC auction prices ~ ""“"h;;
(S/TCC hour) A o |
-0. 0004
{11/18/90-04/ 30,/ () s : |
LTI |
'.'-*’ -
Hina Mils 765 kV
Wiagara
e.oog-—

f.;-;;;w N

= L
N\

— Tramsmisglon lises (345 k¥ and abowe|
Transmission limes (230 k)

Spurce: Mavgant Corsulting Inc
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Power Flow Controller (DC)

Multiterminal HVDC
Cost=$900/W Line=$1M/MW.mi Term=%$250k/MW

$5.2 B (5 phases)

e Offshore multi-terminal voltage-sourced
converter (VSCs) backbone

e 6000 MWs of offshore wind farms in federal
waters off of NJ, DE, MD & VA

e PJM Total Peak Load = 144,644 MW

e Funded by Google, Good Energy & Marubeni
Power

e Optimal power flow scheduling over 2000-
MW transfer capability

e Adds 2 independent transmission circuits

into PIM

e First phase energization: 2016

P Source: Mohamed M. El-Gasseir, Atlantic Wind Connection U.S. DEPARTMENT OF
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NEXT GENERATION HARDWARE

LTC
Transformer
(Grid Asset)

Power Converter

Augmented Transformers —
LTC Transformers e Refit existing transformers
Resilient HVDC Dispatchable P/Q * A fail-normal mode
- ARPA-E Funded e Fractionally rated converters
|
(O Em
==
= .
s s = HVDC fault protection
=H 1 | | H= - High capacity, low cost cable
15kV limiter +H | | | H9 » High-voltage, uncooled
i 6KV Si GTO sl
- .

' ADEPT Goal: 13kV SiC GTO

..'. U.S. DEPARTMENT OF
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Stress on Fast Regulating Units

0.1

0.08

0.04

0.02

“ Hourly Schedule

¥ Continuous Schedule

10% Case 20% Case

30% Case

Variability Increase (%)

6000 -

5000 -

4000 -

3000 -

2000 -

1000 -

Variability Decreases For Larger Footprints

: - : | —

Tri-State zone in WY Wyoming WestConnect WECC

———— ey

Increasing Footprint

Source: Debra Lew, 2010 Western Wind and Solar Integration Study
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Drivers for Change
ARPA-E Workshop

| The White Space ]
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Missing Control Architecture

Major Trends
» Moving to real-time, closed loop control over wide-area
» More controllable AC grid

* Multi-terminal HVDC for improved transport

Future
* Need a comprehensive architecture for control & actuation

* Need a path for incremental technology adoption

QT .DI JCI° \?}
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Today: Uncontrolled Flows

Benefits of Routing Power

G8
1-\|
R

7 AN

Power Routing

26 | 28 | 29
7 -
= ©
17 ; G%
& 24
0.2 MWs
- L
. 16 0.15 MWs
S ) Sending Bus!
0.13 MWs | C~— 7%—}
y 5 G6 (v
15 0.8 MWs
N —
0.34 MWs
| 14
12 A 19
]
11 | 13 20 L :,,-——
10 4 *
o -y g
— 2 ) ) G7
T G5 G4
)

Base Case: 3.4 MW sent; 0.34 MW recd

sPower flow control to route power along underutilized paths, 80% less transmission

infrastructure required

GA Tech study of simplified IEEE 39 Bus system with 4 control areas, operation simulated for 20 years, 20% RPS phased in over 20 years,

sufficient transmission capacity added each year to eliminate curtailment of renewable generation

QIrpPG-E
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GENI

Control Theory Control Engineering Validation
: Centralized :
Network linear Dynamic
control .
Scheduling Real-time
_ convex
Architecture Routing
(protocaoils,
etc) Transmission
Hardware Edge Hardware
Validation Resilient HVAC VAR S
upport
Multi-term Mesh PP
HVDC Point-point Storage MR?JT;?
HVDC
Thin AC Power Rampable
Flow Control “Baseload™
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